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How the Classical Pointer Moves

Thomas Breuer1
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Hepp proposed to solve the measurement problem by taking as pointer observable
one of the classical observables arising naturally in infinite quantum systems.
Here a time evolution is proposed which finishes the measurement in finite time.
This time evolution arises naturally as the limit of measurement interactions of
finite systems when the particle number tends to infinity.

1. INTRODUCTION

Following the pioneering work of Hepp (1972), the use of classical

pointer observables in quantum measurements has been extensively2 studied.

Which problems are solved by the introduction of a classical pointer observ-

able, which are not solved, and which arise newly?

Let, for simplicity, the state space of the observed system 0 be two-

dimensional, C2. Take as measured observable the spin s 3
0 in 3-direction.

Denote by c 6 the eigenstates, and by P 6 the projectors onto them. As

apparatus A take an infinite chain of spins numbered 1, 2, . . . , Then the

Hilbert space of the joint system 0 plus apparatus is * : 5 ^ `
k 5 0 C2

k, where

^ `
k 5 0 denotes the complete infinite tensor product as defined by von Neumann

(1936). * is a nonseparable Hilbert space.

In finite systems one can define the algebra of observable to be the C*-
algebra or von Neumann algebra generated by the one-particle observables.

This yields all observables of the finite system. Let us make the same defini-

tion for our infinite system: take as algebra of observables the C*-algebra

1 Institut fuÈ r Philosphie, UniversitaÈ t Salzburg, A-5020 Salzburg, Austria.
2 See, e.g., BoÂna (1973), Frigerio (1974), Whitten-Wolf and Emch (1976), Machida and Namiki
(1980), Araki (1980, 1986), Kudaka et al. (1989), Namiki and Pascazio (1991), Landsman
(1991), and Nakazato and Pascazio (1992). For philosophical discussions of the classical
pointer observable in quantum measurements see Bub (1988, 1989), Landsman (1995), and
Robinson (1990, 1994).
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! generated by the one-particle observables. ! is called the algebra of

quasilocal observables. In contradistinction to the finite case, ! now does

not contain all bounded or all compact operators on the Hilbert space. The
elements of ! are those bounded operators which can be approximated

in norm by operators with only finitely many entries differing from the

identity operator.

Denote by !9 the weak closure of ! in @(*). It can be regarded as

an extended algebra of observables. !9 is a von Neumann algebra with

nontrivial center ](!9): there are some nontrivial observables in !9 which
commute with all other observables. Such observables are called classical.
This is the case, for example, for the average spin of the infinite chain. The

attribute ª classicalº is justified for such observables: they have a dispersion-

free expectation values in all pure states.

Two states in which some classical observable has a different value are

disjoint. They belong to subspaces of * which are not connected by any
observable. These subspaces are the superselection sectors. The transtion

probabilities between states in different sectors vanish. No observable trans-

formation can carry a state into a disjoint one. In other words: no quantum

mechanical interference terms exist between disjoint states. A vector in *
which is the sum of disjoint vectors has the same expectation value in all
observables as the mixture of the vector states.

Also, any mixed state allows an ignorance interpretation with respect

to all classical observables. Every pure state is an eigenstate of all classical

observables. Thus every decomposition of a mixed state into pure states is

a decomposition into states in which all classical observables have dispersion-

free values. Therefore it is justified to say that the pointer observable in each
single experiment has a well-defined, but perhaps unknown value. Another

reason to take a classical pointer is that only measurement results obtained

with a classical pointer are robust under small perturbations of the final state

(Breuer et al., 1993).

2. THE PROBLEM OF TIME EVOLUTION

Traditionally the time evolution in quantum mechanics is generated by

a self-adjoint operator, the Hamiltonian H. In the Heisenberg picture the time
evolution of an observable A is given by

UiAU*i 5 : a i (A )

where Ut 5 exp(itH ). If H is an observable, U does not change the value of

the classical observables.

The maps a t: @(*) ® @(*) are automorphisms of the von Neumann

algebra @(*). Generalizing the concept of Hamiltonian time evolution, one
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can take time evolutions to be any pointwise norm-continuous one-parameter

automorphism group of the C*-algebra of observables. This definition in two

ways generalizes Hamiltonian evolutions: First, it may happen that a given

one-parameter group of automorphisms does not allow a strongly continuous

unitary implementation. Second, even if the automorphisms are unitarily

implementable in some representations, the Hamiltonian may depend on the

representation. But on the other hand, there are unitary time evolutions which

are not automorphic: if the Hamiltionian is not an observable, the algebra of

observables is not necessarily mapped onto itself.

Automorphic time evolutions have difficulties in describing the evolution

of a classical pointer. This was pointed out by Hepp (1972, Lemma 2).

He showed that if two states r 1, r 2 on a C*-algebra are in the same

superselection sector, and if a t is an automorphism, then r 1 + a t and r 2 + a t

will again be in the same sector, although possibly in a different one from

where they started. Applied to measurements, this has the following conse-

quence: The initial states of the joint system are all in the superselection

sector corresponding to pointer ª readyº ; if the time evolution is described

by a one-parameter automophism group of the C*-algebra, then for every

finite time the evolved states will again be in the same sector. Therefore

every classical observable, in particular the pointer observable, will agree on

the evolved states.

There are two ways to circumvent Hepp’ s no-go theorem. First, and this

way of escape was emphasized by Hepp, one can take the limit t ® ` . Even

if r 1, r 2 are in the same sector and the time evolution is described by a norm-

continuous automorphism group a 1, r 1 + a t and r 2 + a t can converge for t ®
` to disjoint states. Second, one can consider nonautomorph ic time evolutions.

For two reasons there are problems with first way of escape. If one

insists that the experimentally relevant pointer observable really is classical,

then it can change its value just in the infinite-time limit. Real measurements,

however, only take finite time. Furthermore, convergence to the disjoint final

states r `
1 , r `

2 only takes place in the weak*-topology on the state space. This

means that for any fixed set of observables A1, . . . , A 8
n we have

lim
tª̀

( r i ( a i (Ai)) 2 r `
1 (Ai)) 5 0

and similarily for r 2. But for any given time and any given P it is possible

to find an observable B (t) for which the interference terms between r i + a t

and r 2 + a t are bigger than P [The operator B (t) can simply be chosen in

such a way that the Heisenberg time evolution is undone.] It was for this

reason that Bell doubted the physical significance of Hepp’ s result.
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3. A NONAUTOMORPHIC TIME EVOLUTION

Usually nonautomorph ic time evolutions emerge for open systems inter-

acting with an environment . In this final section I would like to discuss

the possibility of nonautomorphic time evolutions for closed systems. This

evolution will take the initial state in finite time into a state with pointer

value depending on the value of the measured observable in the initial state.
It closely resembles Hepp’ s (1972) big-bang time evolution or the evolutions

proposed by Wan (1980) and Bub (1988, 1989), although at least the latter

two did not seem to realize that this kind of evolution carries observable

operators into unobservable ones. The point I want to make is that this

evolution arises as the infinite-particle limit of standard measurement

interactions.
As finite-volume Hamiltonian take

HN : 5 s 3
0 ^

N

k 5 1
s 1

k 5 P 1 ^
N

k 5 1
s 1

k 2 P 2 ^
N

k 5 1
s 1

k

The resulting time evolution

UN(t) : 5 exp(itHN) 5 exp(it s 3
0) ^

N

k 5 1
exp(it s 1

k)

turns the first N spins of an initial state C 6 : 5 c 6 ^ `
k 5 1 ù k in positive or

negative direction depending on the spin state of the measured system and

leaves the rest of the chain unchanged,

UN(t) C 6 5 c 6 ^
N

k 5 1
exp( 6 it s 1

k) f k ^
`

k 5 N 1 1
f k

If the pointer observable were the average spin of the first N spins HN would

be the natural interaction coupling the measured observable s 3
0 to the genera-

tors of pointer displacement. It is the direct analogue of von Neumann’ s

(1932, p. 236) unitary measurement interaction.

Let us now take the limit N ® ` of the finite-volume dynamics,

H ` : 5 s 3
0 ^

`

k 5 1
s 1

k

and as pointer observable the average spin of the infinite chain. U ` (t) carries

an initial state C 6 into

U ` (t) C 6 5 c 6 ^
`

k 5 1
exp( 6 it s 1

k) f k

The whole infinite chain of spins is turned in a direction depending on the

spin state of the measured system. The value of the pointer changes immedi-
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ately. Since the average spin is classical, the evolved states U ` (t) C 6 are

disjoint immediately.

The evolution proposed seems to solve the measurement problem. A
superposed initial state (c+ c + 1 c 2 c 2 ) ^ `

k 5 1 ù k is carried into c+U ` (t) C + 1
c 2 U ` (t) C 2 . Although this is still a vector in *, it represents a mixed state

since for all observables in ! it has the same expectation values as the

mixed state

| c 1 | 2 | c 1 U ` (t) C 1 & ^ c 1 U ` (t) C 1 | 1 | c 2 | 2 | c 2 U ` (t) C 2 & ^ c 2 U ` (t) C 2 |

Every decomposition of this mixed state into pure states is a decomposition

into eigenstates of the pointer observable because every pure state is an

eigenstate of the pointer observable. Thus an ignorance interpretation of this

mixed state is justified.

But the time evolution U ` ? U *` is not an automorphism of ! or of any

weak closure of it in *. For example, the observable | c + & ^ c 2 | ^ `
k 5 1 1 is

carried into | c + & ^ c 2 | ^ `
k 5 1 exp ( 2 it s 1

k) which is not in ! or any weak closure

of it. Since U ` ? U *` is not an automorphism Hepp’ s no-go theorem does not

apply and indeed U ` carries the initial states C 6 , which are in the same

superselection sector, into disjoint states.

In which sense can we say that UN converges to U ` ? In the weak operator
topology UN(t) does not converge to U ` (t) because (UN C 6 | U ` C 6 & 5 0 for

all N, whereas ^ U ` C 6 | U ` C 6 & 5 1. Neither does UN converge to U ` in the

strong operator topology since |UN C 6 2 U ` C 6 | 5 2 for all N. But the

weak*-limit of the states UN C 6 exists and equals U ` C 6 : for any fixed local

operator A (for which only the first, say, l entries are different from the

identity operator) (UN C 6 | A | UN C 6 & is independent of N for N . l.
Nonautomorphic time evolutions also arise in some lattice models with

long-range interactions, for examples, in the mean-field models of Hepp and

Lieb (1973), Morchio and Strocchi (1987), BoÂna (1988), or Unnerstall (1990).

These models do not admit a time evolution described by a one-parameter

group of automorphisms of !. Therefore Landsman (1991) suggested that

the kind of dynamics arising in the presence of long-range interactions might
be used to describe measurement evolutions. But this does not work. If the

algebra of observables is extended to be the closure } of ! in some suitable

weak topology, the evolution is an automorphism of the extended algebra

}. In general } will contain classical observables, and their value will

change in the course of time. But Hepp’ s Lemma 2 can be applied also to

} and yields the result that states which initially agree on all classical
observables will always do so. The present time evolution is different because

it is not an automorphism of any von Neumann algebra }, ! , } , !9.
Is a nonautomorphic time evolution really a bona fide time evolution?

It seems very strange that it carries some observable operator into an unobserv-
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able one. Still, I think that we should consider seriously the possibility that

U ` is realized in nature. After all, there are many realistic interactions where

the time evolution fails to be an automorphism. This is the case, for example,
for any attractive interaction if we take as observables sums of products of

smeared field operators (Narnhofer and Thirring, 1990).
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